查询mysql的操作信息
show status -- 显示全部mysql操作信息show status like "com_insert%"; -- 获得mysql的插入次数;show status like "com_delete%"; -- 获得mysql的删除次数;show status like "com_select%"; -- 获得mysql的查询次数;show status like "uptime"; -- 获得mysql服务器运行时间show status like 'connections'; -- 获得mysql连接次数
show [session|global] status like .... 如果你不写 [session|global] 默认是session 会话,只取出当前窗口的执行,如果你想看所有(从mysql 启动到现在,则应该 global)
通过查询mysql的读写比例,可以做相应的配置优化;
慢查询
当Mysql性能下降时,通过开启慢查询来获得哪条SQL语句造成的响应过慢,进行分析处理。当然开启慢查询会带来CPU损耗与日志记录的IO开销,所以我们要间断性的打开慢查询日志来查看Mysql运行状态。
慢查询能记录下所有执行超过long_query_time时间的SQL语句, 用于找到执行慢的SQL, 方便我们对这些SQL进行优化.show variables like "%slow%";-- 是否开启慢查询;show status like "%slow%"; -- 查询慢查询SQL状况;show variables like "long_query_time"; -- 慢查询时间
慢查询开启设置
mysql> show variables like 'long_query_time'; -- 默认情况下,mysql认为10秒才是一个慢查询+-----------------+-----------+| Variable_name | Value |+-----------------+-----------+| long_query_time | 10.000000 |+-----------------+-----------+mysql> set long_query_time=1; -- 修改慢查询时间,只能当前会话有效;mysql> set global slow_query_log='ON';-- 启用慢查询 ,加上global,不然会报错的;
也可以在配置文件中更改
修改mysql配置文件my.ini[windows]/my.cnf[Linux]加入,注意必须在[mysqld]后面加入slow_query_log = on -- 开启日志;slow_query_log_file = /data/f/mysql_slow_cw.log -- 记录日志的log文件; 注意:window上必须写绝对路径,比如 D:/wamp/bin/mysql/mysql5.5.16/data/show-slow.log long_query_time = 2 -- 最长查询的秒数;log-queries-not-using-indexes -- 表示记录没有使用索引的查询
使用慢查询
Example1:
mysql> select sleep(3);mysql> show status like '%slow%';+---------------------+-------+| Variable_name | Value |+---------------------+-------+| Slow_launch_threads | 0 || Slow_queries | 1 |+---------------------+-------+-- Slow_queries 一共有一条慢查询
Example2:
利用存储过程构建一个大的数据库来进行测试;数据准备
CREATE TABLE dept(deptno MEDIUMINT UNSIGNED NOT NULL DEFAULT 0 comment '编号', dname VARCHAR(20) NOT NULL DEFAULT "" comment '名称', loc VARCHAR(13) NOT NULL DEFAULT "" comment '地点') ENGINE=MyISAM DEFAULT CHARSET=utf8 comment '部门表' ;CREATE TABLE emp(empno MEDIUMINT UNSIGNED NOT NULL DEFAULT 0, ename VARCHAR(20) NOT NULL DEFAULT "" comment '名字', job VARCHAR(9) NOT NULL DEFAULT "" comment '工作',mgr MEDIUMINT UNSIGNED NOT NULL DEFAULT 0 comment '上级编号',hiredate DATE NOT NULL comment '入职时间',sal DECIMAL(7,2) NOT NULL comment '薪水',comm DECIMAL(7,2) NOT NULL comment '红利',deptno MEDIUMINT UNSIGNED NOT NULL DEFAULT 0 comment '部门编号' )ENGINE=MyISAM DEFAULT CHARSET=utf8 comment '雇员表';CREATE TABLE salgrade(grade MEDIUMINT UNSIGNED NOT NULL DEFAULT 0 comment '等级',losal DECIMAL(17,2) NOT NULL comment '最低工资',hisal DECIMAL(17,2) NOT NULL comment '最高工资')ENGINE=MyISAM DEFAULT CHARSET=utf8 comment '工资级别表';INSERT INTO salgrade VALUES (1,700,1200);INSERT INTO salgrade VALUES (2,1201,1400);INSERT INTO salgrade VALUES (3,1401,2000);INSERT INTO salgrade VALUES (4,2001,3000);INSERT INTO salgrade VALUES (5,3001,9999);delimiter $$create function rand_num() returns tinyint(6) READS SQL DATA begin declare return_num tinyint(6) default 0; set return_num = floor(1+rand()*30); return return_num;end $$delimiter $$create function rand_string(n INT) returns varchar(255) READS SQL DATA begin declare chars_str varchar(100) default 'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ'; declare return_str varchar(255) default ''; declare i int default 0; while i < n do set return_str =concat(return_str,substring(chars_str,floor(1+rand()*52),1)); set i = i + 1; end while; return return_str;end $$delimiter $$create procedure insert_emp(in start int(10),in max_num int(10))begin declare i int default 0; #set autocommit =0 把autocommit设置成0,关闭自动提交; set autocommit = 0; repeat set i = i + 1; insert into emp values ((start+i) ,rand_string(6),'SALESMAN',0001,curdate(),2000,400,rand_num()); until i = max_num end repeat; commit;end $$call insert_emp(1,4000000);
SELECT * FROM `emp` where ename like '%mQspyv%'; -- 1.163s# Time: 150530 15:30:58 -- 该查询发生在2015-5-30 15:30:58# User@Host: root[root] @ localhost [127.0.0.1] -- 是谁,在什么主机上发生的查询# Query_time: 1.134065 Lock_time: 0.000000 Rows_sent: 8 Rows_examined: 4000000 -- Query_time: 查询总共用了多少时间,Lock_time: 在查询时锁定表的时间,Rows_sent: 返回多少rows数据,Rows_examined: 表扫描了400W行数据才得到的结果;SET timestamp=1432971058; -- 发生慢查询时的时间戳;SELECT * FROM `emp` where ename like '%mQspyv%';
开启慢查询后每天都有可能有好几G的慢查询日志,这个时候去人工的分析明显是不实际的;
慢查询分析工具
mysqldumpslow
该工具是慢查询自带的分析慢查询工具,一般只要安装了mysql,就会有该工具;
Usage: mysqldumpslow [ OPTS... ] [ LOGS... ] -- 后跟参数以及log文件的绝对地址; -s what to sort by (al, at, ar, c, l, r, t), 'at' is default al: average lock time ar: average rows sent at: average query time c: count l: lock time r: rows sent t: query time -r reverse the sort order (largest last instead of first) -t NUM just show the top n queries -a don't abstract all numbers to N and strings to 'S' -n NUM abstract numbers with at least n digits within names -g PATTERN grep: only consider stmts that include this string -h HOSTNAME hostname of db server for *-slow.log filename (can be wildcard), default is '*', i.e. match all -i NAME name of server instance (if using mysql.server startup script) -l don't subtract lock time from total time
常见用法
mysqldumpslow -s c -t 10 /var/run/mysqld/mysqld-slow.log # 取出使用最多的10条慢查询 mysqldumpslow -s t -t 3 /var/run/mysqld/mysqld-slow.log # 取出查询时间最慢的3条慢查询mysqldumpslow -s t -t 10 -g “left join” /database/mysql/slow-log # 得到按照时间排序的前10条里面含有左连接的查询语句 mysqldumpslow -s r -t 10 -g 'left join' /var/run/mysqld/mysqld-slow.log # 按照扫描行数最多的
注意: 使用mysqldumpslow的分析结果不会显示具体完整的sql语句,只会显示sql的组成结构;
假如: SELECT * FROM sms_send WHERE service_id=10 GROUP BY content LIMIT 0, 1000;
mysqldumpslow来显示Count: 1 Time=1.91s (1s) Lock=0.00s (0s) Rows=1000.0 (1000), vgos_dba[vgos_dba]@[10.130.229.196]SELECT * FROM sms_send WHERE service_id=N GROUP BY content LIMIT N, N;
pt-query-digest
** 说明 **
pt-query-digest是用于分析mysql慢查询的一个工具,它可以分析binlog、General log、slowlog,也可以通过SHOWPROCESSLIST或者通过tcpdump抓取的MySQL协议数据来进行分析。可以把分析结果输出到文件中,分析过程是先对查询语句的条件进行参数化,然后对参数化以后的查询进行分组统计,统计出各查询的执行时间、次数、占比等,可以借助分析结果找出问题进行优化。 pt-query-digest是一个perl脚本,只需下载并赋权即可执行。** 安装 **
wget http://www.percona.com/get/pt-query-digest chmod +x pt-query-digest# 注意这是一个Linux脚本,要指明绝对或相对路径来使用--或者下载整套工具wget percona.com/get/percona-toolkit.rpmrpm -ivh percona-toolkit-2.2.13-1.noarch.rpmwget percona.com/get/percona-toolkit.tar.gztar -zxvf percona-toolkit-2.2.13.tar.gz cd percona-toolkit-2.2.13perl Makefile.PLmake && make install
语法及重要选项
pt-query-digest [OPTIONS] [FILES] [DSN]
--create-review-table 当使用--review参数把分析结果输出到表中时,如果没有表就自动创建。--create-history-table 当使用--history参数把分析结果输出到表中时,如果没有表就自动创建。--filter 对输入的慢查询按指定的字符串进行匹配过滤后再进行分析--limit限制输出结果百分比或数量,默认值是20,即将最慢的20条语句输出,如果是50%则按总响应时间占比从大到小排序,输出到总和达到50%位置截止。--host mysql服务器地址--user mysql用户名--password mysql用户密码--history 将分析结果保存到表中,分析结果比较详细,下次再使用--history时,如果存在相同的语句,且查询所在的时间区间和历史表中的不同,则会记录到数据表中,可以通过查询同一CHECKSUM来比较某类型查询的历史变化。--review 将分析结果保存到表中,这个分析只是对查询条件进行参数化,一个类型的查询一条记录,比较简单。当下次使用--review时,如果存在相同的语句分析,就不会记录到数据表中。--output 分析结果输出类型,值可以是report(标准分析报告)、slowlog(Mysql slow log)、json、json-anon,一般使用report,以便于阅读。--since 从什么时间开始分析,值为字符串,可以是指定的某个”yyyy-mm-dd [hh:mm:ss]”格式的时间点,也可以是简单的一个时间值:s(秒)、h(小时)、m(分钟)、d(天),如12h就表示从12小时前开始统计。--until 截止时间,配合—since可以分析一段时间内的慢查询。
第一部分:总体统计结果:
标准分析报告解释 Overall: 总共有多少条查询,上例为总共266个查询。 Time range: 查询执行的时间范围。 unique: 唯一查询数量,即对查询条件进行参数化以后,总共有多少个不同的查询,该例为4。 total: 总计 min:最小 max: 最大 avg:平均 95%: 把所有值从小到大排列,位置位于95%的那个数,这个数一般最具有参考价值。 median: 中位数,把所有值从小到大排列,位置位于中间那个数。第二部分: 查询分组统计结果:
这部分对查询进行参数化并分组,然后对各类查询的执行情况进行分析,结果按总执行时长,从大到小排序。 Response: 总的响应时间。 time: 该查询在本次分析中总的时间占比。 calls: 执行次数,即本次分析总共有多少条这种类型的查询语句。 R/Call: 平均每次执行的响应时间。 Item : 查询对象第三部分:每一种查询的详细统计结果:
由上图可见,1号查询的详细统计结果,最上面的表格列出了执行次数、最大、最小、平均、95%等各项目的统计。 Databases: 库名 Users: 各个用户执行的次数(占比) Query_time distribution : 查询时间分布, 长短体现区间占比,本例中1s-10s之间查询数量没有,全部集中在10S里面。 Tables: 查询中涉及到的表 Explain: 该条查询的示例** 用法示例 **
(1)直接分析慢查询文件:pt-query-digest slow.log > slow_report.log
(2)分析最近12小时内的查询:
pt-query-digest --since=12h slow.log > slow_report2.log
(3)分析指定时间范围内的查询:
pt-query-digest slow.log --since '2014-05-17 09:30:00' --until '2014-06-17 10:00:00'> > slow_report3.log
(4)分析只含有select语句的慢查询
pt-query-digest --filter '$event->{fingerprint} =~ m/^select/i' slow.log> slow_report4.log
(5) 针对某个用户的慢查询
pt-query-digest --filter '($event->{user} || "") =~ m/^root/i' slow.log> slow_report5.log
(6) 查询所有所有的全表扫描或full join的慢查询
pt-query-digest --filter '(($event->{Full_scan} || "") eq "yes") ||(($event->{Full_join} || "") eq "yes")' slow.log> slow_report6.log
(7)把查询保存到test数据库的query_review表,如果没有的话会自动创建;
pt-query-digest --user=root –password=abc123 --review h=localhost,D=test,t=query_review --create-review-table slow.log
(8)把查询保存到query_history表
pt-query-digest --user=root –password=abc123 --review h=localhost,D=test,t=query_ history --create-review-table slow.log_20140401
(9)通过tcpdump抓取mysql的tcp协议数据,然后再分析
tcpdump -s 65535 -x -nn -q -tttt -i any -c 1000 port 3306 > mysql.tcp.txtpt-query-digest --type tcpdump mysql.tcp.txt> slow_report9.log
(10)分析binlog
mysqlbinlog mysql-bin.000093 > mysql-bin000093.sqlpt-query-digest --type=binlog mysql-bin000093.sql > slow_report10.log
(11)分析general log
pt-query-digest --type=genlog localhost.log > slow_report11.log
另外,还有一款
Query-digest-UI
监控慢可视化查询应用,后续再玩;